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Contrary to the case of n = 72, for n = 54 the same 
locally extremal packing is obtained with tetrahedral 
{3, 3+}4,2 and octahedral {3, 4q-}3,1 surface lattices. It 
should be noted that this packing also represents a 
four-branched spherical helix structure (Sz6kely, 
1974; Tarnai, 1985). 

The applied method did not result in Danzerian 
rigid packings for n = 114 and 282. The result for 
n = 114 is not of interest since the circle diameter for 
n = 114 is less than the circle diameter for n = 120. 
But, the arrangement of 282 circles is quite good, so 
it is worth improving it, by giving up the icosahedral 
symmetry. 

Terms of the packing sequences {3, q+}c÷~,c, 
{3, q+}c÷2,~ defined with removal of the vertices of 
the base polyhedra {3, q} present Danzerian rigid 
arrangements and quite large densities in all of the 
investigated cases. On the basis of the results obtained 
it is expected that Danzerian rigid packings will also 
be obtained in these sequences for values c > 3. 
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Abstract 

A theory of electron diffraction from a planar ideal 
crystal of arbitrary thickness is presented. It is based 
on Schr6dinger's equation. Both the relativistic cor- 
rections in energy and wavelength and the electron 
'absorption'  due to the presence of inelastic scattering 
may be incorporated as usual. This theory is construc- 
ted in an exact differential-equation approach known 
as rigorous coupled-wave analysis. This is an exact 
method of diffraction analysis that has been exten- 
sively tested for its numerical calculation scheme. The 
exact solution for electron wave amplitudes of all 
diffraction orders is formally presented in terms of a 
standard eigenvalue problem and explicitly expressed 
in matrix form. Numerical calculation can be imple- 
mented on digital computers in a straightforward 
manner. An approximate conservation law is given 
for the transmittance and reflectance, which are then 
the relevant dynamical quantities to be measured in 
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a realistic t ime-dependent diffraction process and to 
be calculated in this time-independent diffraction 
theory for comparison. Two derivations of the well 
known Bragg law are sketched. 

I. Introduction 

In theories of electron diffraction from a planar ideal 
crystal, as in all wave-motion problems, the wave field 
is usually expanded into certain elementary waves 
when a differential-equation approach is adopted. 
The amplitudes of the elementary-wave components 
are to be determined, exactly or approximately, by a 
wave equation and boundary conditions. A particular 
relativistically corrected form of Schr6dinger's wave 
equation is used when electron polarization may be 
ignored (Hirsch, Howie, Nicholson, Pashley & 
Whelan, 1977; Cowley, 1981). As for the wave 
expansion, there are three main types. One type is 

O 1987 International Union of Crystallography 



SHU PING LIU 617 

the semi-reciprocal approach of Tournarie (1962), in 
which the wave field is expanded into Fourier series 
with respect only to the coordinates parallel to the 
crystal surfaces. The amplitudes are then depth 
dependent and governed by second-order differential 
equations. Lynch & Moodie (1972) converted these 
equations to first order, and obtained an exact but 
formal solution of the latter. 

Another type is obtained by expanding the wave 
field in Bloch waves with constant amplitudes. This 
approach was initiated by Ewald (1917) for X-ray 
diffraction and adopted by Bethe (1928) for electrons. 
An exact and formal solution for electron diffraction 
in this approach was given by Colella (1972), in which 
the numerical calculation is essentially reduced to a 
standard eigenvalue problem. The third type expands 
the wave field as a single depth-dependent Bloch 
wave. The physical idea of this approach was origi- 
nated by Darwin (1914) for X-rays, and further 
developed by Howie & Whelan (1961) for electrons. 
In an exact treatement of electron diffraction in this 
approach, van Dyck (1976) directly solved the result- 
ing second-order equations of the depth-dependent 
amplitudes exactly and formally. 

In this paper we solve the same problem, also 
exactly and formally, by adopting still another 
approach. We expand the wave field as a single depth- 
dependent Bloch wave, just as in the aforementioned 
van Dyck (1976) theory. The resulting second-order 
equations of the coupled amplitudes, however, are 
converted to first order, as in Lynch & Moodie's 
(1972) semi-reciprocal approach. The resulting first- 
order ordinary differential equations with constant 
coefficients are then solved formally and exactly in 
matrix form. Finally, the diffraction amplitudes of all 
diffraction orders in the vacuum regions outside the 
crystal are determined in terms of the amplitude of 
the incident wave by application of boundary condi- 
tions. Numerical calculation in this theory is essen- 
tially reduced to a standard eigenvalue problem, as 
in Colella's (1972) Bloch-wave expansion. 

2. Coupled-amplitude equations and solutions 

Schr6dinger's equation may be cast in the form 

V2q,(r)+(2zrko)2e(r)@(r)=O, (1) 

with e ( r ) =  1 +eV(r)/E and ko = 1/A =(2moE)'/2/h. 
Here E, mo and - e  are respectively the energy, mass 
and charge of the electron. V(r) is the potential, and 
h is Planck's constant. The crystal slab of arbitrary 
but finite thickness d is assumed to have infinite 
lateral extension (region II with O<z<-d), and it 
divides the vacuum space into two regions (region I 
with -oo < z -< 0 and region III with d --- z < oo). The 
electron is incident from region I and assumed to be 
an arbitrary monoenergetic plane wave, 6i ,c(r)= 

exp(i27rko.r)b. The coordinate frame is chosen such 
that ko = k0(sin 0 i, 0, cos 0i). 

In each region, the wave function 4,(r) and the 
permittivity e(r) are expanded in the same forms, 

~b(~)= ~ q~mm(f) exp(inmm.~) (2) 
m , n , t  

e(F)= ~ em,,texp[i(nmm--nooo).r], (3) 
m ,  ri, I 

where F = 27rkor and n,.,., = (K+ rob1 + nb2+ tb3)/ko 
with m, n, t = 0 ,  +1, +2, . . .  and K =  
ko[sinOi, O,+(eooo-sin2Oi)V2]. The explicit form 
rob1 + nb2+ tb3 of the reciprocal-lattice vectors g is 
used here for later convenience in the discussions 
concerning the diffraction order numbers m, n, t of 
the diffraction-wave components. Substituting (2) 
and (3) into (1), we obtain 

d2 tPmnt/ dT. 2 + i2nr,,.tz dq~,,.,t/df 

2 + E em-,,,,,-,,,,-,,q~,,ow=O. (4) - - n  mntC~ m n t  
m , n , t  

The form of the wave-function expansion, (2), and, 
consequently, the coupled-amplitude equations, (4), 
is almost exactly the same as that of van Dyck (1976). 
Equation (2) is in the form of a single depth-depen- 
dent Bloch wave. To be more precise, it is a single 
modified Bloch wave in which the depth-dependent 
amplitudes have taken the places of the constant 
coefficients in the space-harmonic expansion of the 
Bloch wave. It is known as the coupled-wave 
expansion in electromagnetic wave diffraction (Gay- 
lord & Moharam, 1982). 

The set of second-order differential equations in 
(4) can be readily converted into an equivalent set of 
first-order ones by using the so-called state variables 
(e.g. Liu & Liu, 1975). In fact, Lynch & Moodie (1972) 
used such a technique in solving the amplitude 
equations in semi-reciprocal space. For later con- 
venience in expressing the boundary conditions in 
§ 3, we define the state variable 'conjugate' to ~Pm,t as 

• m n t  : l ' lmntz~O rnnt - i dcP mm/ dz.. (5) 

Thus, from (4) and (5), a set of linear and 
homogeneous first-order differential equations can be 
obtained and then combined into a matrix equation 

df/d_~ = iCf,  (6) 

with 

rl [ oz , ]  
f =  f l  C =  2 2 - n z  

Lf2J'  ~ -  n x -  ny 

where the elements of the column matrices fl and f2 
and the diagonal elements of the diagonal matrices 
nx, ny and nz are respectively q~,,,.,, Xm.,, n,,,,,,x, nmnty 
and n,..,z, while the elements em,,t,,vw of the square 
matrix ~ are related to the Fourier coefficients er.., 
of e(r) in (3) as em.,.vw= em-...-v,,-w. 
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Inside the crystal, e = e H. In accordance with matrix 
theory, the solution of  (6) in this region can be for- 
mally expressed as 

f l i ( ~ )  _-- T I I  exp ( iK I' z )a  II, (8 )  

with square matrix T u = [v i i  I v i i . . . ]  where the column 
matrices vi~ ~, v~I , . . ,  are eigenvectors of the constant  
square matrix Cu, belonging respectively to eigen- 
values 11 K ~ ,  K ~ , . . . ,  which constitute the diagonal  ele- 
ments of  the diagonal  matrix Kn (arranged in that  
order), a n is an arbitrary constant  column matrix. 
This results show that the numerical  calculation in 
this diffraction problem is essentially reduced to a 
s tandard eigenvalue problem, as in the exact Bloch- 
wave-expansion approach  of Colella (1972). 

In the vacuum regions, e = 1. Here we may set n~ = 0 
for convenience. This amounts  to absorbing the z- 
dependent  phase factors in (2) into the z-dependent  
amplitudes.  Then the corresponding C matrix is sim- 
plified to 

CO=[  0 1  2 2 10], (9) 
- n x - n y  

where the superscript  v refers to a vacuum region. 
Since all the submatrices in C ° are diagonal,  (6) can 
be decomposed  into 

df ~,,,/d.~ = i C,0,,.,f °.,,,,, (10) 

with f"  v X,, , , ] ,  the : = [ ~ rant where 
superscript  t stands for matrix transpose,  and with 

0 ;] 
Cm"t = 1 2 2 " ( 1 1 )  

- -  rl m n t x  ~ rl mn ty  

The eigenvalues of C~.., and their corresponding 
ig ~ ~ _ o e envectors are K m n t l  = ~ m n t ,  K m n t 2 - - - - ~ m n t ,  P m n t l  = 

o - [ 1  -so,.,,] ', = [1 ~ , , ] '  and ~ , . , , 2 -  where ~:,,,,, 
+(1 2 _2 ~112 - n , , , , x -  nm,wS is positive (real or imaginary).  
The explicit solution of  (10) is then 

1) - fmm(Z)  = t, • o - T..,, exp [ zK,. . ,(z- ~'g)]a ~m.,, (12) 
1) 

T r e n t  where K.,,,," = [ K  m n t r ~ r r  ,] with r and r' = 1 or 2, ~ = 
=[am, , ,1  a,,,,t2] . Here ¢~rr' 

l) v v v v v t 
m n t l  V m n t 2 ] ,  and a m n  t 

-I) denotes a Kronecker  delta,  while the constant  Zo 
assumes the values 0 and d (=2rrkod)  in regions I 
and III, respectively. Thus,  the solution of  (6) in a 
vacuum region is 

f')(.~) =T  ') exp {iKo(:f- ~ ) } a  ° (13) 

with 

[ _'] ra"+l 1 a ~ = (14)  
T°=  ~ ~ '  La~-j  ' 

and K"= [K~Srr'], where the elements of  the column 
matrices a °+, a °- and the diagonal elements of the 

v ~ o and diagonal matrices K~, l~ are amntl ,  amnt2, K m n t r  

~m,t, respectively. 

By substituting the first component  of  the matrix 
solution (12) into the wave-function expansion (2) 
we obtain the wave solution in a vacuum region 

~b°(~)= ~ a ~ , , r e x p [ i n ~ , , r . ( ~ - i ~ ) ] ,  (15) 
m,n, t ,r  

where n,..,l° = ( nm.,x, n re.w, ~m.,) and n,.~,2o -- 
(n m.,~, n,..ty, -~:m.,) are the wave vectors of the plane- 
wave components  (normalized by ko), and i~ is the 
unit vector in the z direction. Although n,..,x and 
n~. w are real, ~m., can be either real or imaginary,  
corresponding respectively to propagat ing and 
evanescent waves. From these results we see that, for 
a real ~:m.,, the coefficients a~.,~o and amnt2~ are the 
ampli tudes of the plane waves that propagate  with 
the sense along the z axis being positive and negative, 
respectively. 

3. B o u n d a r y  condi t ions  and f o r m a l  so lu t ion  

The boundary  condit ions are ~b ~= ~bn and O~/Oz  = 
aq, U/az at z = 0, and I]/1I ~-- I]/111 and O ~ l l l l / O z  = 0 ~ / I I I / 1 9 Z  

at z =  d. These, together with the definitions of  
~p,.,, and Xm,,, given in (2) and (5), imply the con- 
tinuity of EXP(inz~')f(~f), where EXP( inz~, )=  
[exp (infi')arr']. Then we have 

f '(0) = f " (0) ,  (16) 

fl l i(d) = EXP (in 1)d)fn(d).  (17) 

The simplicity of  this presentat ion of boundary  condi- 
tions is a result of  defining the state variable Xm,, in 
the form of (5). Substituting (8) and (13) into (16) 
and (17), and eliminating the common factor a n, we 
obtain a direct relation between the constant  ampli- 
tudes of the plane waves in the vacuum regions out- 
side the crystal as 

a I = M a  'n (18) 

with 
M1 M2] 

M = M3 M. 

= (T" ) - 'T"  exp ( - /K ' Ia ) (T " )  - '  

x EXP ( - in~)d)T v . (19) 

The matrix M is related to a scattering matrix S which 
will be briefly discussed in Appendix  A. 

In this diffraction problem, the given 'initial condi- 
t ion'  is that  the incident wave is Oinc(r)= 
exp( i2zrko.r )b .  This implies a m - = 0  and a I+= 
b [ 0 . . . 0  1 0 . . . 0 ]  t when the (0 ,0 ,0 ) th  element is 
arranged in the middle of  the column matrix. Then,  
finally, a formal solution of  all the diffraction-wave 
ampli tudes in the vacuum regions outside the crystal 
can be solved exactly from (18): 

a m+ = M;-la I+, (20) 

a I-  = M3Ml-18  I+. (21) 



SHU PING LIU 619 

4. Transmittance, reflectance and Bragg condition 

The probability-current conservation law for a 
stationary state is 

~ j .dA=O,  (22) 

where j = Re (-ih~b*V~b)/2"a'mo and the integration is 
over an arbitrary closed surface. The probability cur- 
rent density j of a stationary scattering state in a 
coupled-wave expansion involves cross-product 
terms between all of the plane-wave components. 
Now we take the integration surface in the shape of 
a box with its plane surfaces either parallel or perpen- 
dicular to the crystal slab, and with the two planes 
that are parallel to the slab being different vacuum 
regions. When the lateral sizes of the latter two planes 
in the x and y directions are much larger than the 
inverses of the reciprocal-lattice periods in the corre- 
sponding directions, the cross-product terms in j will 
be approximately zero after integration (see Appen- 
dix B). The result is a simple but approximate 
equality, j ~ =  .r .n j ~ =  Y.(J zm,,t -J  z.,.,), where 
(hko/mo)~ooolb 2, jrz,,,., = (hko/mo) Re (s%.t)] a-"X+'2m., I 
and • n j~ , .=- (hko /mo)  Re(~:m~t)la'- 12 m.t are constants. 
This is an approximate conservation law for the 
spatially averaged electron density. It becomes 

E (T,,,,,+ Rm,,,) = 1 (23) 
rn~tl, t 

when normalized by the incident current, where 

Tm,,t=Re(~m,,t/~ooo) ai~i,+/b 2, (24) 

R,,,,,t = Re (~,,,.,/~ooo)lalm.t/b[ 2. (25) 

In a practical experiment, it is the electron flux 
impinging on one of the detecting or recording ele- 
ments of a finite size which is measured. In other 
words, one measures only the current density that is 
spatially averaged over the surface of a detecting 
element. Thus, when the size of the detecting elements 
is much larger than the inverses of the reciprocal- 
lattice periods along the x and y directions, the 
approximate conservation law (23) is well satisfied. 
Moreover, a realistic diffraction phenomenon is a 
time-dependent process of scattering off an incident 
wave packet. Only the propagating diffraction waves, 
for which the T,,,,,, and Rmn t a r e  non-zero, correspond 
to the truly transmitted/reflected electrons. Hence, it 
is physically meaningful to interpret T~,, and Rmnt 
as the transmittance and reflectance (or the diffraction 
efficiencies) of the (m, n, t)th-order forwardly and 
backwardly diffracted waves, respectively. These are 
then the only relevant dynamical quantities to be 
measured in a realistic time-dependent diffraction 
process and to be calculated in this time-independent 
diffraction theory for comparison. 

In the extreme case that one of the basic reciprocal- 
lattice vectors, say b3, is exactly perpendicular to the 
crystal surfaces (i.e. b3x = b3y =0),  all the transmit- 

ted/reflected waves with the same order numbers m 
and n but different order number t collapse into a 
single plane wave. In consequence, the interferences 
between this subset of waves must be taken into 
account. That is, their amplitudes must be summed 
first before calculating the transmittance/reflectance 
of the (m, n)th-order diffraction waves. 

According to the coupled-wave expansion (2), the 
wave vectors of the (depth-dependent) diffraction 
waves of all orders inside the crystal are K n + g. Owing 
to the definition of K n, the zeroth-order diffraction 
wave may be interpreted as the 'refraction wave' of 
the given incident wave. It is this refraction wave that 
may be considered as the wave incident upon the 
'unbiased' periodic structure of the permittivity to 
excite the other diffraction waves. The well known 
phase-matching requirement of the Bragg (1913) law 
in diffraction processes (see Kittel, 1976), which cor- 
responds to momentum conservation, should be 
applied to this incident wave and a single diffraction 

z XX x 2  I1 = wave. That is, (Kn)E=(K"+g) :  or tnm,,) -eooo 0. 
Or, more explicitly, 

2 sin O'[m(~./A1) sin 01 cos ~01 

+ n(h/A:)  sin 02 cos ~02+ t(h/A3) sin 03 cos ~03] 
XX 0 i ) 1 / 2  + 2(eooo - sin 2 

x [m(A/A1) cos 01 + n(A/A2) cos 02 

+ t(X/A3) cos 03] 

=-[m(A/A1)  sin 0] cos ~01+ n(A/A2)sin 02 cos ~'2 

+ t(,~/A3) sin 03 cos ~3] 2 

- [m(A/A1) sin 01 sin ~1 + n(h/A2) sin 02 sin ~2 

+ t(,~/A3) sin 03 sin ~3] 2 

- [m(A/A])  cos 01 + n(A/A2) cos 02 

+ t(A/a3) cos 03] 2, (26) 

where we have used bj = (sin 0j cos ~,;, 
sin 0j sin ~j, cos Oj)/Aj (with j = 1, 2, 3) for the basic 
reciprocal-lattice vectors. This kinematical condition 
determines the (m,n,t)th-order Bragg angle of 
incidence, i 0m,,, if it exists. 

When weak dynamical couplings are assumed (i.e. 
Xl em,,, - 1 with the possible exception of e~o), the Bragg 

law may be derived analytically from the coupled- 
amplitude equation (4) for region II by noting the 
fact that the coefficient of the amplitude 11 (Pm,t in this 
equation is tn,,,,,t)" n ,2_ eooo.n [For a similar derivation in 
a Bloch-wave-expansion approach, see Yariv & Yeh 
(1984).] Clearly, the Bragg law of maximal diffraction 
efficiency is not generally true, at least not when the 
interaction between wave and medium is strong. This 
point has been demonstrated in numerical calcula- 
tions (Liu & Cheng, 1986; Moharam, Gaylord, Sincer- 
box, Werlich & Yung, 1984). 
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5. Summary and discussions 

A. Assumptions 

This is an exact potential scattering theory based 
on a simplifying model. In this model, (i) spin effects 
are ignored entirely, (ii) electron motion is governed 
by a Schr6dinger equation, (iii) the crystal slab is 
infinite in lateral extension, (iv) the interaction poten- 
tial is terminated at the crystal surfaces, and (v) the 
incident wave is a monoenergetic plane wave. But, 
as a common practice, the effect of the presence of 
inelastic scattering on elastic scattering may be taken 
into account as electron 'absorption' by adopting a 
complex potential (Yoshioka, 1957). In such a lossy 

I1 diffraction, the averaged permittivity eooo in the 
definition of K 1~ and hence in the Bragg condition 

(~ooo). (26) is to be replaced by its real part, Re H 
Meanwhile, the exact electron-current conservation 
law (22) and, consequently, the approximate con- 
servation law (23) will no longer hold. 

Besides, relativistic kinematic corrections may also 
be incorporated (Fujiwara, 1961, 1962; Howie, 1962). 
In this theory we replace the non-relativistic total 
energy E in the definition of e (r) with W -  moc 2 and 
replace the non-relativistic wavelength h = 
h(2moE) -~/2 with the relativistic wavelength kr = 
c h ( W  2 -  m~c4) -~/2, where W is the relativistic total 
energy and c is the speed of light. These corrections 
can be justified in a fully relativistic theory for the 
same diffraction problem analyzed in a similar fash- 
ion (Liu, 1987). Clearly, when any one of the assump- 
tions made in such a model is not approximately 
satisfied in a given diffraction problem, this theory 
may not be applicable. 

B. Method of  analysis 

This diffraction theory is formulated in a differen- 
tial-equation approach, known as the rigorous cou- 
pled-wave analysis in optical diffraction studies (Gay- 
lord & Moharam, 1982). A rigorous coupled-wave 
analysis starts with a coupled-wave expansion of the 
wave field, and reduces the numerical calculation to 
a standard eigenvalue problem. The present author 
has also applied this method to formulate a fully 
relativistic theory based on the Dirac equation (Liu, 
1987), although Gevers & David (1982) had indepen- 
dently used the same approach. Both theories start 
with a coupled-wave expansion of the spinor wave 
field, in which the spatial parts are nearly the same 
but the spin states are different. Since the Dirac 
equation with (Liu, 1987) or without (Gevers & 
David, 1982) magnetic dipole-dipole interaction is 
of first order, so also are the resulting coupled-ampli- 
tude equations. Therefore, unlike the present theory, 
the amplitude equations can be directly reduced to a 
standard eigenvalue problem without recourse to the 
state-variable technique. 

In summary, the rigorous coupled-wave analysis 
was developed (i) for electron diffraction from a 
crystal based upon the (first-order) Dirac equation 
(Gevers & David, 1982), and (ii) for electromagnetic 
wave diffraction from gratings with a single grating 
vector based upon the (second-order) Helmholtz 
equation (Moharam & Gaylord, 1981, 1983a) and 
the (first-order) Maxwell equations (Moharam & 
Gaylord, 1983b; Rokushima & Yamakita, 1983). 
Transmittance and reflectance are defined in all these 
theories. The second line of development has been 
extended to gratings with two grating vectors based 
on the Helmholtz equation (Liu, 1985) and three 
grating vectors based on the Maxwell equations (Liu, 
1986). The last case includes a rigorous coupled-wave 
theory for X-ray diffraction from planar ideal crystals 
as a special case. The theory presented in this paper 
is a rigorous coupled-wave theory of electron diffrac- 
tion based on the (second-order) Schr6dinger 
equation. 

C. Relations with other exact theories based on the 
same model 

The present theory and the exact theories of Colella 
(1972), van Dyck (1967), and Lynch & Moodie (1972) 
are all based on the same model but formulated in 
different differential-equation approaches. Their 
exact formal solutions should be equivalent. Their 
main differences and similarities have been pointed 
out in the Introduction and in the derivation of the 
present theory (§§ 2 and 3). 

D. Numerical calculation scheme 

In this theory, the exact solution of the diffraction- 
wave amplitudes of all orders is formally expressed 
in explicit infinite-matrix form. Numerical calculation 
may be easily implemented on digital computers by 
straightforward programming, when the matrices 
involved are truncated into a finite form. No special 
techniques or algorithms are required. Suppose only 
the waves from (0, 0, 0)th order to all orders up to 
(+L, +L, +L)th are retained. The number of both 
forwardly and backwardly diffracted waves is then 
2N = 2(2L+ 1) 3, which is equal to the dimension of 
the truncated finite matrices involved in numerical 
calculation. 

For comparison, we note that in a fully relativistic 
and rigorous coupled-wave theory (Gevers & David, 
1982; Liu, 1987), the corresponding matrix dimension 
is doubled [i.e. 4 N = 4 ( 2 L + l )  3] owing to the 
existence of two distinct polarization states, while in 
the approximate theories for spinless electrons (e.g. 
Bethe, 1928; Colella, 1972; Cowley & Moodie, 1957; 
Howie & Whelan, 1961; Tournarie, 1962; Lynch & 
Moodie, 1972; Sturkey, 1962), the number of waves 
retained is N since either the back scattering or the 
forward scattering is usually neglected. The computer 
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memory  requirement  for calculat ion in these theories 
is roughly proport ional  to the squared value of  the 
number  of  waves, except for the physical-optics 
approach of Cowley & Moodie  (1957) in which  it is 
proport ional  only to the number  of  waves (Goodman  
& Moodie,  1974). 

APPENDIX A 

Scattering matrix 

An equivalent  form of  formula  (18) is 

with 

[.,] [.,+] 
aiii  + - -  S (A1) aII I -  

rM3M? ' M4- M3M -IM2] 
S= L M[' -M~-]M2 J" (A2) 

Since the matr ix 9 t ransforms the ampl i tudes  of  
incident  waves into those of  diffracted waves, it is the 
scattering matr ix in this rigorous coupled-wave theory 
of  electron diffraction from a crystal with infinite 
lateral extension. But it is quite different from the 
scattering matr ix  defined in the usual  scattering- 
theory formal ism for a finite-ranged scattering poten- 
tial [see, for example,  Taylor  (1972) or Rodberg & 
Thaler  (1967)]. The scattering matrix S here is not 
unitary even for real scattering potentials,  since the 
plane-wave functions on which S is defined are not 
complete orthogonal  functions. In particular,  this set 
of  waves contains evanescent  waves. It is not the 
complete set of  free-particle wave functions used in 
the usual scattering theory. An exact conservation 
law can be readily derived from (A1): 

I-  E i i i + . -  a I *' =(S S)000,000,. ( a 3 )  
m,n,t  

It appears,  however,  that the terms on the lef t-hand 
side cannot  be interpreted as probabili t ies.  

APPENDIX B 

Approximate probability-current conservation law 

The probabi l i ty  current density j contains the product  
terms between each pair  of  the plane-wave com- 
ponents of  the stat ionary state. The surface integral 
of  the product  term between the (m, n, t)th and 
(u, v, w)th plane waves over the box surface described 
in the ma in  text involves the factor 

sinc (Lx{(m - u ) b l x  + ( n - v)b2~ + ( t -  w)b3x}  ) 

a n d / o r  

sinc ( Ly {( m - u )bty + (n - / ) )  b2y + ( t -  w)b3y}) ,  

where sine x = (sin 1rx) /7rx  and L,,, Ly are the lateral 
sizes of the box in the x and y directions. If  L,, and 

Ly are chosen large enough such that L,,bjx ~, 1 and 
Lybjr >> 1 for j = 1, 2, and 3, the sinc funct ions will 
both approach  8,,,,,8,,vStw. Consequent ly ,  all of  the 
cross product  (interference) terms involved in 
equation (22) will approximate ly  vanish and the 
approximate  conservat ion law (23) follows. The cor- 
responding result for electromagnetic wave diffrac- 
tion from gratings with a single grating vector was 
shown by Russell  (1984). 
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